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A class of filters for large eddy simulations of turbulent inhomogeneous flows is
presented. A general set of rules for constructing discrete filters in complex geometry
is given and examples of such filters are presented. With these filters the commutation
error between numerical differentiation and filtering can be made arbitrarily small,
allowing for derivation of a consistent set of equations for the large scale field. The
application of such filters for explicit filtering in large eddy simulations and the issue
of boundary conditions for the filtered field are also discusseghoss Academic Press

I. INTRODUCTION

In large eddy simulation (LES) of turbulent flows the dynamics of the large-scale str
tures are computed, while the effect of the small-scale turbulence is modeled usil
subgrid-scale (SGS) model. The differential equations describing the space-time evol
of the large-scale structures are obtained from the Navier—Stokes equations by app
a low-pass filter. In order for the resulting LES equations to have the same structur
the Navier—Stokes equations, the differentiation and filtering operations must commut
inhomogeneous turbulent flows, the minimum size of eddies that need to be resolve
different in different regions of the flow. Thus the filtering operation should be perform
with a variable filter width. In general, filtering and differentiation do not commute wh
the filter width is nonuniform in space.

The problem of noncommutation of differentiation and filtering with nonuniform filte
widths was studied by Ghosal and Moin [1], who proposed a new class of filters for wt
the commutation error could be obtained in closed form. The application of this fil
to the Navier-Stokes equations introduces additional terms (due to commutation e
which are of second order in the filter width. Ghosal and Moin suggested that the lea
correction term be retained if high-order numerical schemes are used to discretize the
equations. This procedure involves additional numerical complexities which can be avo
by using filters with specific properties which we will discuss in this paper. Van der Ven
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constructed a family of filters which commute with differentiation up to any given order
the filter width; however, this approach is limited to a specific choice of filters and does
address the issue of additional boundary terms that would arise in finite domains.

Due to the lack of a straightforward and robust filtering procedure for inhomogene
flows, most large eddy simulations performed to date have not made use of explicit fil
The nearly universal approach for LES in complex geometries is to argue that the f
support of the computational mesh together with the low-pass characteristics of the
crete differencing operators effectively act as a filter. This procedure will be referrec
as implicit filtering since an explicit filtering operation never appears in the solution p
cedure. Although the technique of implicit filtering has been used extensively in the p
there are several compelling reasons to adopt a more systematic approach. Foremost
these is the issue of consistency. While it is true that discrete derivative operators he
low-pass filtering effecthe associated filter acts only in the one spatial direction in whic
the derivative is takeriThis fact implies that each term in the Navier—Stokes equations
acted on by a distinct one-dimensional filter, and thus there is no way to derive the dist
equations through the application of a single three-dimensional filter. Considering this
biguity in the definition of the filter, it is nearly impossible to make detailed comparisons
LES results with filtered experimental data. In the same vein it is not possible to calcu
the Leonard term [3] that appears as a computable portion in the decomposition o
subgrid-scale stress.

The second significant limitation of the implicit filtering approach is the inability t
control numerical error. Without an explicit filter, there is no direct control in the energy
the high-frequency portion of the spectrum. Significant energy in this portion of the spect
coupled with the nonlinearaties in the Navier—Stokes equations can produce signifi
aliasing error. Furthermore, all discrete derivative operators become rather inaccurat
high-frequency solution components, and this error interferes with the dynamics of
small-scale eddies. This error can be particularly harmful [4] when the dynamic mc
[5,6]is used since it relies entirely on information contained in the smallest resolved sc:
In addition, it is difficult to define the test to primary filter ratio which is needed as an inj
to the dynamic procedure.

The difficulties associated with the implicit filtering approach can be alleviated by p
forming an explicit filtering operation as an integral part of the solution process. By damg
the energy in the high-frequency portion of the spectrum it is possible to reduce or el
nate the various sources of numerical error that dominate this frequency range [7]. Ex|
filtering reduces the effective resolution of the simulation, but allows the filter size to
chosen independently of the mesh spacing. Furthermore the various sources of num
error that would otherwise enter the stresses sampled in the dynamic model can be
trolled, which can ultimately result in a more accurate estimate for the subgrid-scale m
coefficient. Finally, the shape of the filter is known exactly, which facilitates comparis
with experimental data and the ability to compute the Leonard term.

In addition, explicit filtering provides a means of reducing the various sources of |
merical error that become most severe for length scales on the order of the mesh siz
damping the high-frequency portion of the solution, it is possible to control the adve
effects of numerical error. In particular, if the filter width is held fixed as the mesh is
fined, the velocity field will converge to the true solution to LES equations. This should
contrasted with the conventional approach, where the mesh is refined without the use
explicit filter. In the latter case, additional length scales are added each time the me
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refined, and thus the process converges to a direct numerical simulation (DNS) rather
a LES. The increase in the number of degrees of freedom as the mesh is refined also r
it difficult to distinguish between the effects of reduced numerical error and the increas
the range of resolved length scales. In short, the use of an explicit filter allows a mear
both assessing and minimizing the effects of numerical error in practical simulations.

In order to realize the benefits of an explicit filter, it is necessary to develop robust
straightforward discrete filtering operators that commute with numerical differentiation.
mentioned above, the earlier works in this area either required adding corrective tern
the filtered Navier—Stokes equations or required the use of a restricted class of filters
could not account properly for nonperiodic boundaries. The objective of this work is
develop a general theory of discrete filtering in arbitrary complex geometry and to supy
set of rules for constructing discrete filters that commute with differentiation to the desi
order.

The paper is organized as follows. In Section Il we introduce a general class of varia
width filters that commute with differentiation to any specified power of the mesh spaci
The issue of boundary conditions for the filtered field is discussed there as well.
theory of constructing consistent discrete filters with commutative properties is prese
in Section IIl. Finally, in Section 1V we demonstrate the application of discrete filters 1
consistent explicit filtering in large eddy simulations.

[I. COMMUTATION ERROR OF FILTERING AND DIFFERENTIATION
OPERATIONS AND BOUNDARY CONDITIONS

Consider a one-dimensional fiefed(x) defined in a finite or infinite domaira[ b). Let
f (x) be a monotonic differentiable function which defines the mapping from the dom
[a, b] into the domain ¢, B8], i.e., & = f(x). f(X) can be associated with mapping of the
nonuniform computational grid in the domaia, b] to a uniform grid of spacing\, where
the nonuniform grid spacing is given byx) = A /f'(x).

Let x = F (&) be the inverse mappind=( f (x)) = x). The filtering operation is defined
in analogous way as in [1]. Given an arbitrary functipx) we obtain the new function
¢ (&) =y (F(&)) defined on the interval, 8]. The functiong (¢) is then filtered using the
definition

— 1 (P (&—n
¢(§)=K/a G<T,$>¢(n)dn, 1)

whereG is a filter function, which, in general, can have different shapes in various
gions of the domain. This definition is more general then the one commonly used in
LES literature and, as will be shown later, is crucial for elimination of boundary terms
the commutation error. The introduction of filters of different shapes in different parts
the domain is necessitated by considering inhomogeneous (nonperiodic) fields. If we
sume that the functioa (&) is homogeneous (periodic) i8], then a periodic filter can
have the same shape throughout the domain.
The filtering operation in physical space can be written as

— 1 [ /fx)-—f
wx):X/ G(M f(X))t/f(y)f/(y)dy- %)
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Note that definitions (1) and (2) are equivalent. However, for practical purposes, the filte
operation (1) in the mapped space is much easier than (2), and we will use the fo
throughout unless stated otherwise.

Commutation Error in One Spatial Dimension

Let us consider first the commutation error of filtering and derivative operations in ¢
spatial dimension. We define an operator that measures commutation error by

dy]_dy dy
[H} T dx  dx’ @)
If we differentiateJ(x) with respect tox and use the chain rule, we obtain
dy . _d¢ .,
&(X) = @(E)f (), (4)

where the filtering operation (1) is used for Introducing the change of variables=
& — A, Eq. (1) can be rewritten as

E—a

b6 = | T GE.eBE - AD)dr. )

i
A

Performing the formal Taylor series expansiorp@f — A¢) in powers ofA we obtain

—1k
( ,) A DEg (£), (6)

+00
PE—DD) =) —
k=0

whereDg = d¥/d&k is the derivative operator. In general, the radius of convergence of (6
finite and determined by propertiesg@ft ). Nevertheless, if we assume that the spectrum
¢ (&) does not include wavenumbers higher than some finite cutoff wavenumbethen
as is shown in Appendix A, the series (6) is uniformly convergent everywhere in the don
& € [a, B]. This assumption is justified by the fact that in actual numerical simulations 1
wavenumber range is limited by the support of computational mesh. Therefore, witt
loss of generality, we consider the radius of convergence of (6) to be infinite. Under
assumptionp (¢ — A¢) andits Taylor series are interchangeable. Consequently, substitu
(6) into (5), and changing the order of summation and integration we obtain

E—a

IR e G DL B A k
pE) =) A [, €6 6 de |Dig(©). )
£k e

A

Let MK(£) be thekth filter moment defined by

E—a

whe) = [ e sde ®

A
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Note that¢ is a nondimensional variable and thus all filter momenits ) (k > 0) are
nondimensional quantities. With this definition Eq. (7) can be rewritten as

N EDF ke Dk
$E) =) T AMEODDE). Q)
k=0 ’

This series, as shown in Appendix A, may have either infinite or finite radius of converge
depending on the filter moments. We will later show that for the discrete filters the rac
of convergence of series (9) is infinity.

Substituting (9) into (4) gives

dy o N T L k k+1
E(X)—f(x)g " A( a D; + M*(§)Dg )45(5)- (10)

Applying the filtering operation (2) t@% and using the fact that

dy =~ do
ax =g ® e (11)
we obtain that
dy 1 [f _(g—ny \do
a(x) = Z/oz G(T’é)ﬁ(n)f (F () dn. (12)

Introducing the change of variables=& — A¢ and performing the formal Taylor series
expansion in powers ok we obtain

) 400 1 400 (_1)k
F(Fm) =) =D ( o

=1

-1
AknggF(s)> D! f (), (13)
k=1

d 400 1 Kk
d—¢(n) => %AkckD?%@ (14)
n k=0 ’

In numerical applications, the mapping function is evaluated on a discrete mesh. Thus
assumption that the spectrum of mapping function does not contain high frequencies is
valid. Consequently, without loss of generality the radii of convergence of series (9), (.
(13), (14) can be considered to be infinity, and thus the original functions and their Ta
series are interchangeable. Substituting (13) and (14) into (12), using a procedure anals
to (7) and (9), and subtracting (10) from the resulting equation we obtain

dw B +o00 . . +00 de ‘
[a} _;Akwu ©A +§Bk¥<sm, (15)

whereAy (k > 1) andBy (k > 0) are, in general, nonzero coefficients. Thus, as can easily
seen, the commutation error is determined by filter mombHt& ) and mapping function

F ().
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G(6)

FIG. 1. Filter G(¢) (correlation function of Daubechies scaling function) with 5 (—), 9 (- —-), and 1#)(—
vanishing moments.

In this paper we consider a general class of filters which satisfy the properties

MOE) =1  fort € [a, B]; (16a)
MKE) =0  fork=1,..., n—1and¢ € [a B]; (16b)
MK@E)  existfork > n. (16¢)

There are many examples of filters which satisfy these properties when the fupction
is defined in the domai—oo, +00). One is the exponentially decaying filter defined ir
[2]. Another example is the correlation function of the Daubechies scaling function u
in multiresolution analysis for constructing orthonormal wavelet bases. The correla
function is characterized by local support and has-21 vanishing moments, wheig

is the order of the Daubechies scaling function. For details we refer to [8,9]. Example
such filters with 5, 9, and 17 vanishing moments are shown in Fig. 1. The correspon
Fourier transformsG (k) = [*°° G(¢) exp(—iké) d&, are presented in Fig. 2. We also note
that the definition (16) does not require that the filter kernel be symmetric. This allc
us to use a wider class of filters than in [1,2]. We do not present continuous filters wi
satisfy definitions (16a)—(16c), since, as will be shown later, for practical purposes,

G(k)

~

k/2m

FIG. 2. Fourier transfornG (k) of the filtersG (&) shown in Fig. 1.
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need discrete filters. For now we only assume that such filters exist and that they ca
constructed.
Using properties (16a) and (16b) it follows that

k
dd'\g(s)zo fork=0,...,n—1 a7
Consequently, the commutation error (15) is
dy n
{&} = O(A"). (18)

It is easy to show that in the homogeneous (periodic) case, when the shape of the
does not depend on the location, and the mapping from the physical to the computat
domain is linearAy is exactly zero for ank and the filter moments are not functions of
the location. This results in zero commutation error.

Generalization to Multiple Dimensions

The nonuniform filtering operation in one spatial dimension can be extended easil
three spatial dimensions. Let us consider a three-dimensional/figd(x = (X1, X2, X3)")
defined in three-dimensional domdn Let us consider a nonlinear map of the physice
space domaimD into a rectangular domaif = [«1, B1] X [z, B2] X [as, B3] given by
£ =1(x), where¢ = (&1, &, £3). As in the one-dimensional case this transformation cz
be associated with the mapping of a spatially nonuniform computational grid to a unifc
grid with spacingsA1, A, Az in the corresponding directions. Let= F(€) be the inverse
mapping.

The three-dimensional filtering operation is defined the same way as in one spatic
mension. Given an arbitrary functiaf(x) we obtain the new functiop (&) = ¥ (F(&))
defined in the domaif. The functiong (£) is then filtered using a sequence of three one
dimensional filters. Thus the filtering operation in three spatial dimensions is defined t

3 S
$(©) =ﬁg§ie(é' —

wherefQ is the volume integral over domain. The filtering operation in physical space
can be written as

_ S 1 fix0)—f
o= 11 A_G(“‘)(y), | (x))w(yu(y)dsy, (20)
i=1 !

& ) ¢ (n) dn, (19)

Aj

whereJ(y) is the Jacobian of the transformatign— x. Note that the filtering operations
(19) and (20) are equivalent, but (19) is more convenient than (20) for both the anal
of the commutation error and practical purposes. We will use (19) in what follows unl
stated otherwise.

If one performs the same type of analysis as in the one-dimensional case, it is ea
show (see Appendix B) that the commutation error in three spatial dimensions is giver

{%

axJ = O(A], A}, A]). (21)
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Thus, the commutation error of differentiation and filtering operation is no more than
error introduced by anth-order finite difference scheme, provided that the filterrhasl
zero moments.

Boundary Conditions for Filterd Field

It is well known that the boundary conditions for the filtered field are not necessa
the same as those for the nonfiltered field. Nevertheless the boundary conditions fo
nonfiltered field, which we will call physical boundary conditions, are still commonly us
in large eddy simulations. In this section we will justify the use of the unfiltered fie
boundary conditions for LES, at least when local structures are of the order of filter wi
or larger and the appropriate filter is used.

Equations (B2) and (B4) in Appendix B are valid in every point of the domain. Tht
applying these equations to any poinat the boundary of the domain and using the fac
that the firsih — 1 moments are zero together with (17) we obtain

Y (X) = ¥(x) + O(A], A, AD), (22a)
81’; 81// n n n
a_xk(x) = a_xk(x) + O(AT, A3, A}). (22b)

The difference between the boundary conditions for the filtered and unfiltered fields i
the ordem. Thus the physical boundary conditions can be used for the filtered field. N
that, if desired, the number of vanishing moments for the filter close to the boundary ca
larger than that in the middle of the domain. Thus the boundary conditions for the filte
field can approach the physical boundary conditions up to the desired order of accu
provided that all local structures are appropriately resolved.

Ill. CONSISTENT DISCRETE FILTERING IN COMPLEX GEOMETRY

Inlarge eddy simulation of turbulent flows, the solution is available only on a set of disci
grid points, and thus discrete filters are required in various operations. The machi
developed in Section Il can be adapted to discrete filtering. In this section we will lir
ourselves to consideration of discrete one-dimensional filtering, since three-dimensi
filtering can be considered as an application of a sequence of three one-dimensional fi
Also, since the filtering operation is performed in the mapped space, we will consider ¢
the case of uniformly sampled data.

Construction of Discrete Filters

Let us consider a one-dimensional figdd) defined in the domaire], B]. {¢j} corre-
sponds to values @f(§;) atlocations; =« + Aj (j =0, ..., N), whereA is the sampling
interval. A one-dimensional filter is defined by

L
1 — ) '
KG(QEJA ",s,) = D> Wi =&, (23)

I=—K;
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wheres (&) is as-function with the property
B
/ ¢ —&)dn = ¢(é) (24)

and N are weight factors. We consider the general class of asymmetric filters for w
K; #L;. One of the important aspects of discrete filters is that all filter moments exist :
condition (A10) holds, which means that the radii of convergence of Taylor series (9)
other related series are infinite. Substitution of (23) into (1) gives the following definiti
for a discrete filter:

L

¢j = Z W|j¢j+l- (25)

I=—K;

Property (23) allows us to apply results of Section Il to discrete filters.
In light of the filter definition (16), the weight factors should satisfy the properties

Lj )

I=—K;

Lj )
> 1™ =0, m=1...n-1 (26b)
I=—K;

Equations (26) give us constraints on yvand are solvable if and only if; + K; + 1> n.
If L; + K; 4+ 1> nthen additional constraints can be applied.

Conditions (26) give the minimum number of degrees of freedoms for a discrete filte
order for the derivative and filtering operations to commute to and&€his condition gives
the minimum filter support, which can be increased by adding additional constraints.
additional linear or nonlinear constraints can be altered depending on the desired she
the Fourier transfornG (k) associated with the filter (23) given by

Li ) )
Glo= > wle's . (27)

I=—K;

A desirable constraint on a Filter is that its Fourier transform be zero at the cutoff freque
i.e.,G(r/A) =0. The mathematical equivalent of this requirement is given by

> 1'w =0 (28)

I=—K;

Conditions (26) and (28) represent the minimum number of constraints which shoulc
imposed on the filter. Examples of weights for minimally constrained discrete filters

givenin Table I, and associated Fourier transforms for some of these filters are presen
Figs. 3-5. Examples of the Fourier transforms of minimally constrained symmetric filt
with one, three, and five vanishing moments are presented in Fig. 3. These filters corres
respectively to cases 1, 6, and 10 presented in Table I. We see that with the increase

number of vanishing moments, filter becomes a better approximation to the sharp c
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TABLE |
Values of the Weight Factors and the Number of Vanishing Moments for Different
Minimally Constrained Discrete Filters

Number of
vanishing
Case moments W w_p W_g Wo Wi A W3 Wy Ws
L 1 S S
2 2 A S
3 ? T T A
4 3 2 i -3 i T
5 3 % : : i %
6 3 -4 i : i ®
7 4 S % v ® "%
8 4 % CHRE R T
0 4 % 5 % & & 3
10 5 & & & % & -3 &
—
-
S

Ak/m

FIG. 3. Fourier transfornG (k) of the symmetric minimally constrained discrete filters with one (- ——), thre
(---), and five (—) vanishing moments corresponding respectively to cases 1, 6, and 10 given in Table I.

~

G(k)|

~

R{G(R)}, —S{G(k)},

~

Ak/m

FIG. 4. RealfR{G(Kk)} (---), imaginary3{G(k)} (- —-), and absolute valy& (k)| (—) of Fourier tranform
G(k) of the asymmetric discrete filter with four vanishing moments corresponding to case 8 given in Table |
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~

G(k)|

P _%{GA(k)}’

R{G(k)}

Ak/w

FIG.5. RealR{G(K)} (---), imaginary3{G(k)} (- —-), and absolute valué& (k)| (—) of Fourier transform
G(k) of the asymmetric discrete filter with four vanishing moments corresponding to case 9 given in Table .

filter, which is more appealing from the physical point of view. It also can be observed 1
filters shown in Fig. 3 have different effective cutoff frequencies. Thus in order to cont
the effective cutoff frequency, additional constraints should be introduced. The Fou
transform of asymmetric filters with four vanishing moments corresponding to cases 8
9 presented in Table | are shown in Figs. 4 and 5, correspondingly. Note that the asymn
filters introduce phase shifts due to their nonzero imaginary parts. The imaginary part sh
be minimized by introducing additional constraints. Also notice the overshoot in the r
part and absolute value of the filter shown in Fig. 4. In general, an overshoot is not desit
since it may lead to nonphysical growth of energy. Additional constraints are necessa
order to reduce or remove overshoot.

In the interior of the domain, in order to eliminate the phase shift, the filter should
symmetric; i.e., the following relation should be satisfied:

wi=wl,, 1=1..L, (292a)
Lj=K;=L. (29b)

In this case the filter only adjusts the amplitude of a given wavenumber component o
solution and leaves its phase unchanged. Near the boundaries, however, it may be nec
to make the filter asymmetric. In this case a phase shift is introduced and one is intere
in minimizing this effect.

Examples shown in Figs. 3—5 demonstrate the necessity of the introduction of additi
constraints which ensure that the resulting filter has all the desired properties. One w
constrain the filter is to specify either its value

LJ . -
G(k) = Z w| g 1Ak (30a)
1=K

or the value of its derivative
L ) _
M= Y (—iakhmw/e K (30b)
I=—K;

for a given frequenck. Examples of weights for filters with three vanishing moment
and different linear constraints are given in Table Il, and associated Fourier transfc
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TABLE Il
Values of the Weight Factors and the Number of Vanishing Moments for Different
Linearly Constrained Discrete Filters

Number of
vanishing
Case moments Additional constraints oW Wi W, W3 W4 Was
Aoy 373 911 203 11 203 61
1 3 G(z;)=1/2 Ts2 s 18 "ot ez oo
6™ (z)=0,m=0,...,5
Aoy _ 1 9 1
2 3 G(a)_l/Z 5 » 0 -3
¢™(z)y=0,m=0,...,1
A2y 47 35 11 1
3 3 G(5)=1/2 7 W i 7

for these filters are presented in Fig. 6. These filters are constrained in such a way thi
effective filter widths are &, 2A, and 32A (corresponding to characteristic wavenumbet
Ak/m=1/3,1/2, 2/3). We observed that for the filters with relatively small characterist
wavenumbers, the number of zero derivativek atr/A should be considerably larger
than for filters with characteristic wavenumbers closerfa. If we chose this number

small enough, then the value of the Fourier transform of the filter for frequencies larger
characteristic wavenumber may reach a large amplitude. Thus setting the large numt
derivatives ak = it/ A forces the filter to have the desired shape.

Alternative Construction of Filters with Desired Properties

Linear constraints of the form (30) are often enough to obtain the desired filter. Howe
there are situations, especially for asymmetric filters, where it is difficult to choose a lim
number of constraints such that the filter is close to the desired shape. It is much 1
desirable to specify the target filter functi@ (k) and to construct a filter which will be
close to it. One way of doing so is to find the set of filter weights which satisfy all line

G(k)

Ak/m

FIG. 6. Fourier transfornG (k) of the symmetric discrete filters with different additional linear constraint
corresponding to cases 1 (- —-), 243}, and 3 (—) given in Table II.
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~

G(k)

()},

G
et
&

R{G ()}, -

Ak/m

FIG.7. RealR{GK)} (---), imaginary3{G(k)} (-—-), and absolute valué (k)| (—) of Fourier transform
G(k) of the asymmetric discrete filter with three vanishing moments obtained using only linear constraints.

constraints and minimize the functional

/A

/A R R R R
/ MGk — Geo)2 dk+ / 3Gk — G2k (31)
0 0

wheref{z} and3{z} denote correspondingly real and imaginary parts of a complex numl
z. Note that integral ranges as well as relative weights for real and imaginary contribut
to the functional can be arbitrarily set depending on the filter fundBetk). The mathe-
matical details of the minimization are given in Appendix C. Figure 7 shows an exam
of an asymmetric filter with an eight-point sten¢K =2 andL =5). The real part of
the filter is constrained to be/2 at Ak/m =1/2. The filter value and its first two deriva-
tives are constrained to be zerokat 7/ A. In order to improve the filter’s characteristics
the minimization was performed, where requirements for two derivatiies-at/ A were
relaxed and quadratic minimization as described in Appendix C was used instead. Th
sulting filter is shown in Fig. 8. Comparing both filters we can see that the filter preser
in Fig.8 has better characteristics. We found that, in general, the minimization proce
gives better filters than the ones obtained using only linear constraints.

G(k)|

()},

2]
&

{

R{G ()}, -

Ak/m

FIG.8. RealR{GK)} (---), imaginary3{G(k)} (- —-), and absolute valué& (k)| (—) of Fourier transform
G(k) of the asymmetric discrete filter with three vanishing moments obtained using quadratic minimization.
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Pade Filters

Discrete filters presented in this section can be considered as one example of an
class of discrete filters with vanishing moments. Other discrete filters can be utilize
well. For example, one useful extension of the present algorithm is to use Pade-type f
which are given by

N;j Lj

Z Vgn¢_1'+m = Z W|j¢>j+l (32)

mszj |:7Kj

and require the solution of linear systems of equations. The Fourier tran€fdgmasso-
ciated with Pade-type filters is given by

L; J a—iAKI
Dtk W €

G(k) 2‘1’;_.\41 i eiakm’ (33)
In the case of Pade filters, conditions (26) can be rewritten as
Lj
Swl=1 (34a)
I=—K;
N;j
> ovh=1 (34b)
m=—M;
NJ I‘J
> omivi=>1w,  i=1...n-1 (34c)

m=—M; |=—K;

It is straightforward to constrain Pade filters to a specific value at specific frequency. |
ertheless, linear constraining of filter derivati\éém)(k) at a certain frequency requires
additional specification of filter value as well as all previous derivatives. For more det
of Pade filters we refer to [10].

The use of Pade-type filters gives more flexibility in constructing filters which are clo
to spectral cutoff filters. Examples of weights for symmetht; & N; andK; = L ;) Pade
filters with five vanishing moments and different linear constraints are given in Table
and associated Fourier transforms are presented in Fig. 9. Comparing Figs. 6 and 9
be seen that Pade filters are considerably better approximations of sharp cutoff filters.

Commutation Error of Discrete Filtering and Differentiation

In Section Il we demonstrated that the commutation error of continuous filtering ¢
differentiation operators is determined by the number of vanishing moments of the ¢
tinuous filter. As was mentioned earlier in this section, the same conclusion is valid
discrete filters. In order to validate that discrete filtering and differentiation commute
to the same order, we perform a numerical test, in which we differentiate numerically
Chebyshev polynomial of the 16th order and determine the commutation error of disc
filtering and differentiation operators. Since the derivative of the Chebyshev polynomial
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TABLE IlI
Values of the Weight Factors for Different Linearly Constrained Symmetric Pade Filters
with Five Vanishing Moments

Case Additional constraints oV Vi Vip  Vig Wo Wi Wi Wi Wiy Wys
AN 543 1405 313 51 63 105 15 45 5 1
1 GGx)=1/2 15 512 26 512 256 512 18 Toza G Tom
Am o _
G™(z)=0,m=0,..., 9
S()— 7 5 7 175 5 35 __1
2 G(K =1/2 12 0 24 24 768 48 1536 0 1536
A (m)
G (£)=0,m=0,...,7
S(2y — 49 13 19 u 119 i 1
3 G(E) =1/2 120 60 240 30 480 15 480

A (m)

¢"(z)=0,m=0,...,3

be calculated exactly, we can calculate the truncation error of the numerical differentia
as well. We choose the nonuniform computational mesh to be given by

~_tanhy(1—2j/Ng))
a tanh(y)

: (35)

whereNy is the total number of grid points andis the stretching parameter. The choice
for the hyperbolic grid stretching is motivated by its frequent use in both DNS and L
simulations of wall-bounded flows. For the hyperbolic tangent grid, the ratio of larges
smallest grid size is a function of stretching paramegtand is given by coshy/sinhy. In
this test we choosg = 2.75, which makes this ratio approximately 62. The differentiatio
operator is chosen to be fourth-order accurate on the nonuniform grid. Figure 10 st
the truncation error of finite difference scheme and commutation errors as a function o
total number of gird points for filters with different number of zero moments. The rest
presented in Fig. 10 confirm that the discrete filtering and differentiation operators comn
up to thenth order, provided that the discrete filter mas 1 vanishing moments.

G(k)

Ak/m

FIG.9. Fourier transformatiofs (k) of the symmetric Pade filters with different additional linear constraint
corresponding to cases 1 (-—-), 24}, and 3 (—) given in Table III.



COMMUTATIVE FILTERS FOR LES IN COMPLEX GEOMETRIES 97

Lo, commutation and truncation errors

FIG. 10. Truncation error (—) of the differentiation operator and commutation error for discrete filteril
and differentiation operations for the filters with one-J, three (- — -), five (—), and seven (- — -) vanishing
moments.

IV. EQUATIONS FOR LARGE EDDY SIMULATION AND DISCRETE FILTERING

If we apply the continuous filtering operation (20) with nonuniform filter width to th
Navier—Stokes equations and ignore terms of ordes[Q, associated with the residual
commutation error, we obtain the filtered equations of motion. For an incompressible 1
the nondimensional equations take the form

dUj

—L —o, 36

a% (36)
ou  omu;  ap 1 9% 37)
at  dx;  9ax  Redxjax;’

Equation (37) can be rewritten in the form

au;  duu; ap 9T 1 92y
oui | owY; __9p _ory - o

) (38)
at 0X; aX%; 0X; RedXx;dX;

where the effect of small scales appears through the SGS stress term given by
Tij = Uiuj — UiUj, (39)

which should be modeled. Note thatin contrast with standard LES formulation, the nonlir
terms such agjuj andz;; are treated with a secondary filtering operation to eliminate tl
generation of frequencies higher than the characteristic wavenumber for the chosen
This is how the filter operator enters the solution procedure. The resulting (explicitly) filte
Navier—Stokes equations (36), (38), (39) govern the evolution of large scales of motior
was demonstrated in the previous sections, the boundary conditions for filtered velc
components can be taken to be the physical boundary conditions.

A possible drawback of this new formulation is that Eq. (38) is not Galilean inva
ant provided that modeled subgrid-scale stresses (39) are Galilean invariant and non
cutoff filter is utilized. Non-Galilean invariance follows from the appearance of the te
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¢jd(Ui — Ui)/dxj, wherec; is the uniform translation velocity. The error is seen to be pre
portional to the difference between the singly and doubly filtered velocity. This differer
will be zero for a sharp cutoff filter, but will not vanish in the general case. The spectral ¢
tent of the error is proportional ©B(k)(1—G(k)), whereG (k) is the filter transfer function
andk is the wave vector. This fact implies that error is only generated in the wavenum
band where5 (k) differs significantly from 0 or 1. Thus it is possible to minimize the erro
by constructing the explicit filter to be as close as possible to a sharp cutoff.

The subgrid-scale stress (39) can be modeled using the dynamic procedure asin[5,6
dynamic procedure can utilize different models. We will illustrate the dynamic proced
using the Smagorinsky model given by

- 1 _ cISS.
) — 38T = ~20% CIS S, (40)

wheres;; is the Kronecker deltaS; = (3U; /8x; + aU;/0%)/2, |S| = (2S;Sj)Y2, C is
the Smagorinsky coefficient, anl is the effective filter width. Once again the nonlineal
terms are filtered to ensure that they have the same frequency content as other terms
equations.

If we apply a coarser spatial filter, called the “test” filter, to the filtered Navier—Stok
equation (38) we obtain

—

o0i  oGia;  op Ty 1 920

— =— - — , 41
ot 3Xj 0Xi 8Xj ReanBXj ( )
where subtest-scale stress
Tij = tiuj — G4 (42)
is similarly approximated by
. 1 - e
Tij — §8ikak = —2A%C|S|S;, (43)

whereA is the effective test filter width. Note that we assumed that Smagorinsky coefficie
for both subgrld and subtest-scale stresses are the same. The resolved turbulent s

Lij = Uiy, u; — Uju;j, which represent the contribution of the smallest resolved scales to
Reynolds stresses and can be computed exactly due to the explicit filtering, are relat
the subgrid-scale stressgg andT;; by the identity

Lij = Tij — 7jj. (44)

Combining (40), (43), and (44) we obtain

1 —— ——

Li; —éaiijk=_2A2C|§|§j +2A2C|§|§j~ (45)

Equation (45) is solved in the least square sense in an analogous manner as in [6] Brie
can be chosen to minimize the sum of the squares of the resily&ls where the residual
is given by

—_—

1 “ P e ——
Ej =L — §5iijk+2A2C|S|Sj —2A%C|SIS;. (46)
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Note thatC appears above only as?C or A2C, and thus there is no need to explicitly
provide the values fon and A. The only parameter which needs to be prescribed is t
filter width ratio, which is given by the inverse ratio of cutoff frequencies.

Inorderto perform numerical simulations, Egs. (36), (38), (39) should be discretized u:
a finite difference scheme of the desired order. We emphasize that the local grid spe
should be finer than the local filter width to ensure that the grid is adequate to resolve
filtered field. Consequently, if the filter width is of the same order as the computatic
grid, application of the filter which has— 1 zero moments to the Navier—Stokes equatior
introduces an error that is no more than the error introduced hthaarder finite difference
scheme used to discretize the LES equations. In other words, in order to perform a cons
derivation of the discrete LES equations, the filter has to have atrleagtzero moments
if nth-order finite differencing is used.

V. CONCLUSIONS

We have formulated general requirements for a filter having a nonuniform filter wi
which ensure that the differentiation and filtering operations commute to any desired o
Minimization of the commutation error is achieved by requiring that the filter has a num
of vanishing moments. Application of this filter to the Navier—Stokes equations result
the standard LES equations which can be solved on a nonuniform computational grid.
commutation error can be neglected provided that the filtenhag vanishing moments,
wheren is the order of the numerical discretization scheme used to solve the LES equat
It was shown that the error associated with the implementation of the same boundary ¢
tions as for Navier—Stokes equations is of the same order or smaller as the error asso
with the finite difference operator. A general set of rules for constructing discrete filter:
complex geometries is provided. The use of these filters ensures consistent derivati
discrete LES equations. The resulting discrete filtering operation is very simple and
cient. We have also described the general procedure for using an explicit filter in LE:
obtain a solution consistent with the true filtered Navier—Stokes equations. The same
can also be used for direct comparison between experimental and LES results.

APPENDIX A

The purpose of this appendix is to validate the use of Taylor series expansions ir
analysis of the commutation error.

Let us assume that spectrum of a given one-dimensional $ig§gl does not contain
wavenumbers higher thdgq,ax. Theng (¢§) can be written in terms of the Fourier integral
given by

Kmax N .
s = [ dwe dk (A1)
7kmax
whereg (k) contains both continuous, (k) and discretgy (ki) spectra given by

Lg
$U) =G0 + Y dak)sk —ki). (A2)

i=Lg
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Themth derivative ofgp (&) with respect t& can be written as

kmax .
™ (&) = (=)™ / kMg (k) e~k dk, (A3)

Kmax

from which it is easy to obtain the inequality

kma)( ~
6™ (&) < /Kn KI™ (k) dk. (Ad)

Using Holder’s integral inequality we obtain

Kmax 1/2 Kmax 1/2
y¢<m><s>|s(/k kzmdk) (/k |¢<k>|2dk) . (A5)

Writing the total energy as

kmax ~
e~ [ " idaord (A6)
—kmax
we obtain the inequality
2E knax | 2
(m) m
@] = (5% K a7
Using (A7), the following sequence of inequalities can be obtained,
— (= 1)m — m|;|
> ATTDI ™ @) <Z 6™ &)
m=0
< (2Ek. X)l/zf (KmaxA[£ )™
= & = ml(2m + 1)1/2
< (2Eka/? grtll, (A8)

which proves the absolute and thus uniform convergence of Taylor series (6).
Applying inequality (A7) to the analysis of absolute convergence of Taylor series (9)
obtain that

+00

1
Z( )M AMM™ ($)¢(m)($) <Z—Am||\/|m($)||¢(m)(%—)|
m=0
= (Kmax®)M[M™ (&)

m!(2m + 1)1/2 ° (A9)

< (2EKna"? Z
m=0

Comparing two consecutive terms of the latter series, it can easily be seen that the <
converges for arbitrana provided that

IM™H@©)]

S AR Al10
m—oco [IMM(E)|(M+ 1) (AL0)
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Itis easy to show that the limit always holds for filters with finite support. If the limit (AL(
is finite and equal to AC then the series (9) converges under the condition that

KmaxA < C. (A11)

This condition holds for some filters with infinite support such as Gaussian filters.

APPENDIX B

The purpose of this appendix is to give mathematical details of the analysis of the ¢
mutation error in three spatial dimensions.
Differentiating Eq. (20), written as in (19), gives

of
—‘”( )—Z%@—J( ). (B1)

Introducing the change of variables=& — A;¢, performing the formal Taylor series
expansion in powers af;, and changing the order of summation and integration we obtz

3 4o
$(&) = <HZ My <si>D;) $ (&), (B2)
=1

where

§i—¢
Aj

MiE) = [ de@ ) da. (83)

Substituting (B2) into (B1) gives

oy (-1k
8—Xk(x)—2 ‘()(HZ : A“M“(&.)D)

i#] k=0

T -1 K; dm
x( CDT \ ( SJ (§))Dg (épD““))qﬁ(& (B4)

1
kj=0 Kj!

where the two terms in parentheses appear owing to the fact that a derivative in one s
direction affects only the filtering operation in this direction (terms in second parenthe:
and leaves the filtering operations in other two directions intact (terms in first parenthe:
Applying the filtering operation (20) téy /dXk, using the fact that

3

_w( )_Za—g,@_( ), (B5)



102 VASILYEV, LUND, AND MOIN
and changing the order of summation and integration, the following equation is obtain
& —ni afj ¢ 3
—X) = i | —()—(n) d°n. B6
() Z%HA, < : s.)aka)am(n) n (B6)

Introducing the change of variables= & — A;¢ and performing the formal Taylor series
expansion in powers ak; we obtain

9 ) 1 3 +oo 1)k 3 k |
a—x'k< Z—|<ZZ o (ZA §|D5.> Fm@Dxm) Dy fj(), (B7)
i=1

1k=1

—+00 1k 3
—")< =y 7 (ZA C.DE.> De 6 (6). (B8)

k=0

Once again, without loss of generality, we assume that radii of convergence of the a
series are infinite. Note that Egs. (B7)—(B8) are the three-dimensional analogs of Egs.
(14). Substituting (B7)—(B8) into (B6), using a procedure analogous to (19) and (B2),
combining terms of the same order we obtain

+00 +00 +00 ) )
[_} _ (Aj. M} (60 MJ (£2)Mb(Es)

8Xk i=0 j:O =0

+ Z Bl e g Mi(ED M3 (&) M|3(€3)> Ay AYAL, (89)

where Ajj and Bfjj (i, j,1 >0, m=1,2,3) are, in general, nonzero coefficients witr
the exception ofAqge, Which is always zero. Using the fact thAbyo=0, Mi"(gi) =0
for k=1,...,n—1, and property (17) we obtain for the commutation error give
by (21).

APPENDIX C

Inthis appendix we give the mathematical details of the minimization procedure descr
in Section I, which is used for constructing discrete filters with desired properties. T
procedure consists in specifying a target filter functk) in wave number space and
minimizing the difference between it and the Fourier transform of the discrete filter.

Without loss of generality let us consider the case of uniform grid wita 1. Then the
Fourier transformG (k) of the discrete filter is given by (27). Without loss of generalit
Eq. (27) can be rewritten by omitting indé»xassociated with the location of the filter. Then
we have

L
Gl =Y we (C1)
I=—K

Let N=K + L + 1 be the total number of degrees of freeddmjs the total number of
liner constraints which include both (26) and (30) constraibis: N — L, is the number
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of remaining degrees of freedom. Then the filter weights are given by
Lr
Wi =W+ > AmZm, (C2)
=1

wherez,, are real coefficients for the remaining degrees of freedom®ands realN x L,
influence matrix. In the case whepare chosen to be one of the filter weights, the appropria
wP will be zero. Substituting (C2) into (C1) we obtain

L, L Lr
Gk) = Go(k) + ) ( > Am e““) Zn = Go(K) + > _ (@ (K) +ibm (K))Zm, (C3)

m=1 \I=—K m=1

where

L
am(k) = Y Amcoskl) (C4)

I=—K

and

L
bn(k) = — > Amsin(kl). (C5)

I=—K

Let Gi(k) be a target filter function, which we wagt(k) to approach. Substituting (C3)
into (31) we obtain the functional

T Ly 2
®(z,...,2.,) =/0 < am(k)zm—fﬁ{ét(k)—éo(k)}> dk

m=1
T Lr 2
+ / ( bm(k)zm—%{ét<k>—é(k>}> dk. (C6)
0 \m=1

Coefficientszy, can be chosen to minimize the functioda(zy, . . ., z., ). It is easy to show
that the minimum of the functionab(zy, ..., z,,) is obtained whem,, is the solution of
the system of linear equations

L
Z AmZm =R, (C7)
m=1

where A, is a positive definitd_, x L, matrix given by

Am = /o (@& (K)am(K) + by (Kb (k) dk (C8)

andR is a vector given by

R = /O @ (KR(Ge(k) — Go(k)} + b (I{Gi(k) — Gk} dk. (C9)
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